320 research outputs found

    Dynamic behavior analysis and time delay feedback control of gear pair system with backlash non-smooth characteristic

    Get PDF
    The present work investigates the non-smooth vibration characteristic and time delay feedback control of a gear pair system involving backlash and time-varying mesh stiffness. Firstly, a gear pair model with backlash non-smooth characteristic is established. Then in combination with the discontinuity mapping method, Floquet theory is presented to determine the stability and bifurcation of periodic response, and the period doubling bifurcation has been accurately predicted. Moreover, the maximal Lyapunov exponent is obtained to determine the chaos state in gear pair system which is conform to the bifurcation diagram and Poincare section. Finally, a time delay feedback is introduced to control the dynamic behaviors of the system, and numerical simulation results show that the system can be effectively controlled from chaotic motion into stable periodic motion by increasing the delay feedback gain or delay time

    Study on Modification of Lignin as Dispersant of Aqueous Graphene Suspension and Corrosion Performance in Waterborne G/Epoxy Coating

    Full text link
    Though graphene (G) as an excellent protective material for metal, it can aggravate metal corrosion in other side. The modification of sodium lignin sulfonate was achieved by using itaconic acid and acrylamide,which was proved by UV-vis and Raman spectra. The modified sodium lignin sulfonate (LAI) with more carboxylic groups can be used as the dispersant for aqueous graphene suspension. The commercial graphene can be dispersed uniformly and stability in water via π-π interaction with LAI at high concentration (6 mg/mL),and the LAI-G system can be used as an inhibitor in waterborne epoxy coatings too. Electrochemical impedance spectroscope (EIS) and Tafel polarization curves showed that the corrosion performance of waterborne epoxy system with well-dispersed G (0.5 wt %) was remarkably improved compared with pure epoxy coating

    Field assessment of basin irrigation performance and water saving in Hetao, Yellow River basin: issues to support irrigation systems modernisation

    Get PDF
    Research PaperWater-saving irrigation needs to be implemented in Hetao irrigation district to help satisfying the demand by other users in the Yellow River basin. Aiming at assessing the potential irrigation performance and water saving at farm level, a set of traditional basins and another of precision-levelled basins cropped with maize, wheat and sunflower and managed by farmers were evaluated. Data were collected to characterise the basin sizes, microtopography, inflow rates, advance and recession times, cut-off time and soil water content. In addition, families of infiltration curves were derived from field observations and subsequent use of model SIRMOD. Infiltration was higher for the precision-levelled basins and decreased from the first to the next irrigation events. Infiltration data were used to support the computation of distribution uniformity (DU), beneficial water use fraction (BWUF) and deep percolation (DP). For traditional basins, DU and BWUF were low and DP was high. When precise land levelling was practised, DU increased greatly to near 94% but BWUF improved little, because irrigation scheduling was inadequate leading to excessive water application; however, non-negligible water saving was achieved for maize and wheat since they have higher irrigation demand. In contrast, simulating the application of an appropriate irrigation scheduling through adjusting the cut-off time led to an approximately unchanged DU but BWUF greatly increased and DP reduced to 10% on average. This condition represents a potential water saving of 34e39%; however its achievement requires improved design of farm systems, appropriate irrigation water deliveries and scheduling, and the support and training of farmersinfo:eu-repo/semantics/publishedVersio
    corecore